17. Definitions of a Scalar and a Vector in Terms of Transformation Properties
$ x_{i}'=\sum_{j}^{}\lambda _{ij}x_{j} $의 좌표변환($ \sum_{j}^{}\lambda _{ij}\lambda _{kj}=\delta _{ik} $)
$ \phi $ is unaffected → scalar
$ A_{i}'=\sum_{j}^{}\lambda _{ij}A_{j} $ is transformed from the $ x_{i} $ system to the $ x_{i}' $ system → vector
18. Properties of Scalar and Vector
$ \vec{A}, \vec{B} $: Vector, $ \phi ,\psi ,\xi $: Scalar
1) Commutative Law
$ A_{i}+B_{i}=B_{i}+A_{i} $
$ \phi +\psi =\psi+\phi $
2) Associative Law
$ A_{i}+(B_{i}+C_{i})=(A_{i}+B_{i})++C_{i} $
$ \phi +(\psi+\xi ) =(\phi+\psi)+\xi $
3) Multiplication
$ \xi \vec{A}=\vec{B} $: Vector
$ \xi \phi =\psi $: Scalar
$ B_{i}'=\sum_{j}^{}\lambda _{ij}B_{j}=\sum_{j}^{}\lambda _{ij}\xi A_{j}=\xi\sum_{j}^{}\lambda _{ij}A_{j}=\xi A_{i}' $
'math for physics > vector calculus' 카테고리의 다른 글
Vector Calculus (9) - Position Vector, Unit Vector (0) | 2021.07.22 |
---|---|
Vector Calculus (8) - Scalar Product (0) | 2021.07.21 |
Vector Calculus (6) - Geometric Significance of Transformation Matrices (0) | 2021.07.19 |
Vector Calculus (5) - Properties of Matrix (0) | 2021.07.16 |
Vector Calculus (4) - Matrix Operation (0) | 2021.07.15 |