6. with Auxiliary Conditions $ g=\sum_{i}x_{i}^{2}-\rho ^{2}=0 \rightarrow r=\rho =constant $: Equations of Constraint (구면 위를 따라간다) $ f=f(y_{i},y_{i}';x)=f(y,y',z,z';x) $ $ g(y_{i};x)=g(y,z;x)=0 $ $ \Rightarrow \frac{\partial y}{\partial \alpha }, \frac{\partial z}{\partial \alpha } $ are not independent (하나의 variable이 바뀌면, 다른 variable도 바뀐다) $ \therefore $ for $ \alpha =0, \frac{\partial y}{\par..