math for physics/vector calculus 15

Vector Calculus (12) - Velocity, Acceleration

29. Rectangular Coordinate Position: $ \vec{r}=\vec{r}(t) $ Velocity: $ \vec{v}\equiv \frac{d\vec{r}}{dt}=\dot{\vec{r}} $ Acceleration: $ \vec{a}\equiv \frac{d\vec{v}}{dt}=\frac{d^{2}\vec{r}}{dt^{2}}=\ddot{\vec{r}} $ Rectangular Coordinates (Unit Vector가 시간에 대한 상수) Position: $ \vec{r}=x_{1}\hat{e_{1}}+x_{2}\hat{e_{2}}+x_{3}\hat{e_{3}}=\sum_{i}^{}x_{i}\hat{e_{i}} $ Velocity: $ \vec{v}=\dot{\vec{r..

Vector Calculus (7) - Definitions and Operations of a Scalar and a Vector

17. Definitions of a Scalar and a Vector in Terms of Transformation Properties $ x_{i}'=\sum_{j}^{}\lambda _{ij}x_{j} $의 좌표변환($ \sum_{j}^{}\lambda _{ij}\lambda _{kj}=\delta _{ik} $) $ \phi $ is unaffected → scalar $ A_{i}'=\sum_{j}^{}\lambda _{ij}A_{j} $ is transformed from the $ x_{i} $ system to the $ x_{i}' $ system → vector 18. Properties of Scalar and Vector $ \vec{A}, \vec{B} $: Vector, $ ..

Vector Calculus (6) - Geometric Significance of Transformation Matrices

13. Rotating Coordinate Axes 1) Counterclockwise about the $ x_{3} $-axis $ x_{1}'=x_{2}, x_{2}'=-x_{1}, x_{3}'=x_{3} $ $ \lambda _{11}=\lambda _{13}=\lambda _{22}=\lambda _{23}=\lambda _{31}=\lambda _{32}=0 $ $ \lambda _{12}=\cos (x_{1}',x_{2})=1 $ $ \lambda _{21}=\cos (x_{2}',x_{1})=-1 $ $ \lambda _{33}=\cos (x_{3}',x_{3})=1 $ $ \Rightarrow \vec{\lambda_{1}} =\bigl(\begin{smallmatrix} 0 & 1 & ..