23. Vector Product(Cross Product)

→C=→A×→B→C=→A×→B
Ci=∑j,kϵijkAjBkCi=∑j,kϵijkAjBk
Levi-Civita Density(Permutation Symbol): ϵijk={0+1−1ϵijk=⎧⎪⎨⎪⎩0+1−1
0: two or three indexes are same (ϵ112,ϵ113,ϵ121,ϵ131,ϵ211,ϵ311ϵ112,ϵ113,ϵ121,ϵ131,ϵ211,ϵ311)
(ϵ221,ϵ223,ϵ212,ϵ232,ϵ122,ϵ322ϵ221,ϵ223,ϵ212,ϵ232,ϵ122,ϵ322)
(ϵ331,ϵ332,ϵ313,ϵ323,ϵ133,ϵ233ϵ331,ϵ332,ϵ313,ϵ323,ϵ133,ϵ233)
(ϵ111,ϵ222,ϵ333ϵ111,ϵ222,ϵ333)
+1: i,j,k even permutation (ϵ123,ϵ231,ϵ312ϵ123,ϵ231,ϵ312)
-1: i,j,k odd permutation (ϵ321,ϵ213,ϵ132ϵ321,ϵ213,ϵ132)
C1=∑j,kϵ1jkAjBk=ϵ123A2B3+ϵ132A3B2=A2B3−A3B2C1=∑j,kϵ1jkAjBk=ϵ123A2B3+ϵ132A3B2=A2B3−A3B2
C2=∑j,kϵ2jkAjBk=ϵ213A1B3+ϵ231A3B1=−A1B3+A3B1C2=∑j,kϵ2jkAjBk=ϵ213A1B3+ϵ231A3B1=−A1B3+A3B1
C3=∑j,kϵ3jkAjBk=ϵ312A1B2+ϵ321A2B1=A1B2−A2B1C3=∑j,kϵ3jkAjBk=ϵ312A1B2+ϵ321A2B1=A1B2−A2B1
∑kϵijkϵlmk=δilδjm−δimδjl∑kϵijkϵlmk=δilδjm−δimδjl
(ABsinΘ)2=A2B2(1−cos2Θ)=(∑iA2i)(∑iB2i)−(∑iAiBi)2(ABsinΘ)2=A2B2(1−cos2Θ)=(∑iA2i)(∑iB2i)−(∑iAiBi)2
=(A2B3−A3B2)2+(A3B1−A1B3)2+(A1B2−A2B1)2=(A2B3−A3B2)2+(A3B1−A1B3)2+(A1B2−A2B1)2
(ABsinΘ)2=C21+C22+C23=|→C|2=C2(ABsinΘ)2=C21+C22+C23=|→C|2=C2
⇒C=ABsinΘ⇒C=ABsinΘ
24. Result of Vector Product is Vector
→A⋅(→B×→D)=∑i,j,kϵijkAiBjDk
→D⋅(→A×→B)=∑i,j,kϵijkDiAjBk=∑i,j,kϵjkiDiAjBk
⇒→A⋅(→B×→D)=→D⋅(→A×→B) (i,j,k are dummy and can be renamed)
if →A=→B then →A⋅(→A×→D)=→D⋅(→A×→A)=→D⋅0=0
⇒→A,→A×→D are perpendicular
⇒→C=→A×→B is perpendicular to →A,→B(plane defined by →A,→B)
Direction of →C: Right Hand Screw from →A to →B
25. Vector Product of Unit Vector

^ei×^ej=^ek=∑k^ekϵijk (i,j,k in cyclic order)
→C=→A×→B=∑i,j,k^eiϵijkAjBk
=|^e1^e2^e3A1A2A3B1B2B3|=^e1|A2A3B2B3|−^e2|A1A3B1B3|+^e3|A1A2B1B2|
26. Properties of Vector Product
→A×→B=−→B×→A
→A×(→B×→C)≠(→A×→B)×→C in general
→A⋅(→B×→C)=→B⋅(→C×→A)=→C⋅(→A×→B)≡→A→B→C
→A×(→B×→C)=(→A⋅→C)→B−(→A⋅→B)→C
(→A×→B)⋅(→C×→D)=→A⋅[→B×(→C×→D)]=→A⋅[(→B⋅→D)→C−(→B⋅→C)→D]=(→A⋅→C)(→B⋅→D)−(→A⋅→D)(→B⋅→C)
(→A×→B)×(→C×→D)=[(→A×→B)⋅→D)]→C−[(→A×→B)⋅→C)]→D=(→A→B→D)→C−(→A→B→C)→D=(→A→C→D)→B−(→B→C→D)→A
'math for physics > vector calculus' 카테고리의 다른 글
Vector Calculus (12) - Velocity, Acceleration (0) | 2021.07.27 |
---|---|
Vector Calculus (11) - Differentiation (0) | 2021.07.26 |
Vector Calculus (9) - Position Vector, Unit Vector (0) | 2021.07.22 |
Vector Calculus (8) - Scalar Product (0) | 2021.07.21 |
Vector Calculus (7) - Definitions and Operations of a Scalar and a Vector (0) | 2021.07.20 |