Processing math: 30%

math for physics/Calculus of Variation 6

Calculus of Variation (6) - Delta Notation

7. Delta Notation Jαdα=x2x1(fyddxfy)yαdαdx δJ=x2x1(fyddxfy)δydx ($ \frac{\partial J}{..

Calculus of Variation (5) - with Auxiliary Conditions

6. with Auxiliary Conditions g=ix2iρ2=0r=ρ=constant: Equations of Constraint (구면 위를 따라간다) f=f(yi,yi;x)=f(y,y,z,z;x) g(yi;x)=g(y,z;x)=0 yα,zα are not independent (하나의 variable이 바뀌면, 다른 variable도 바뀐다) for $ \alpha =0, \frac{\partial y}{\par..

Calculus of Variation (4) - Functions with Several Dependent Variables

5. Functions with Several Dependent Variables f=f(y_{1}(x),y_{1}'(x),y_{2}(x),y_{2}'(x), ... ;x) \Rightarrow f=f(y_{i}(x),y_{i}'(x);x), i=1,2,...,m y_{i}(\alpha ,x)=y_{i}(0,x)+\alpha \eta _{i}(x) \frac{\partial J}{\partial \alpha }=\int_{x_{1}}^{x_{2}}\sum_{i}(\frac{\partial f}{\partial y_{i}}-\frac{\mathrm{d} }{\mathrm{d} x}\frac{\partial f}{\partial y_{i}'})\eta _{i}(x) dx=0 $ ..

Calculus of Variation (3) - 2nd Form of the Euler Equation

4. 2nd Form of the Euler Equation to get better form of equation for \frac{\partial f}{\partial x}=0 df=\frac{\partial f}{\partial y}dy+\frac{\partial f}{\partial y'}dy'+\frac{\partial f}{\partial x}dx $ \frac{\mathrm{d} f}{\mathrm{d} x}=\frac{\mathrm{d} }{\mathrm{d} x}f(y,y';x)=\frac{\partial f}{\partial y}\frac{\mathrm{d} y}{\mathrm{d} x}+\frac{\partial f}{\partial y'}\frac{\mathrm{d} ..

Calculus of Variation (2) - Euler's Equation

2. Euler's Equation J=\int_{x_{1}}^{x_{2}}f(y(\alpha ,x),y'(\alpha ,x);x)dx \frac{\partial J}{\partial \alpha }=\frac{\partial }{\partial \alpha }\int_{x_{1}}^{x_{2}}f(y,y';x)dx =\int_{x_{1}}^{x_{2}}(\frac{\partial f}{\partial y}\frac{\partial y}{\partial \alpha }+\frac{\partial f}{\partial y'}\frac{\partial y'}{\partial \alpha })dx ($ \because y(\alpha ,x)=y(0,x)+\alpha \eta (x) \ri..

Calculus of Variation (1) - Calculus of Variation

Calculus of Variation 카테고리는 5th (Marion)의 chapter 6 순서를 따라갑니다 1. Calculus of Variation find an extreme solution (max or min) J=\int_{x_{1}}^{x_{2}}f(y(x),y'(x);x)dx ( y'\equiv \frac{\mathrm{d} y}{\mathrm{d} x} ) (x: independent variable, y: dependent variable) y=y(\alpha ,x) \alpha =0 \rightarrow y=y(0,x)=y(x) : function that yields an extreme for J $ \Rightarrow y=y(\alpha ,x)=y(0..

1