Calculus of Variation 카테고리는 <Classical Dynamics of Particles and Systems>5th (Marion)의 chapter 6 순서를 따라갑니다
1. Calculus of Variation
find an extreme solution (max or min)
J=∫x2x1f(y(x),y′(x);x)dx (y′≡dydx )
(x: independent variable,
y: dependent variable)
y=y(α,x)
α=0→y=y(0,x)=y(x): function that yields an extreme for J
⇒y=y(α,x)=y(0,x)+αη(x) (η(x1)=η(x2)=0: at the endpoint)

J(α)=∫x2x1f(y(α,x),y′(α,x);x)dx
∂J∂α|α=0=0: necessary condition (not sufficient)
'math for physics > Calculus of Variation' 카테고리의 다른 글
Calculus of Variation (6) - Delta Notation (0) | 2021.08.27 |
---|---|
Calculus of Variation (5) - with Auxiliary Conditions (0) | 2021.08.26 |
Calculus of Variation (4) - Functions with Several Dependent Variables (0) | 2021.08.25 |
Calculus of Variation (3) - 2nd Form of the Euler Equation (0) | 2021.08.24 |
Calculus of Variation (2) - Euler's Equation (0) | 2021.08.23 |