4. 2nd Form of the Euler Equation
to get better form of equation for $ \frac{\partial f}{\partial x}=0 $
$ df=\frac{\partial f}{\partial y}dy+\frac{\partial f}{\partial y'}dy'+\frac{\partial f}{\partial x}dx $
$ \frac{\mathrm{d} f}{\mathrm{d} x}=\frac{\mathrm{d} }{\mathrm{d} x}f(y,y';x)=\frac{\partial f}{\partial y}\frac{\mathrm{d} y}{\mathrm{d} x}+\frac{\partial f}{\partial y'}\frac{\mathrm{d} y'}{\mathrm{d} x}+\frac{\partial f}{\partial x}=y'\frac{\partial f}{\partial y}+y''\frac{\partial f}{\partial y'}+\frac{\partial f}{\partial x} $
$ \rightarrow y''\frac{\partial f}{\partial y'}=\frac{\mathrm{d} f}{\mathrm{d} x}-\frac{\partial f}{\partial x}-y'\frac{\partial f}{\partial y} $
$ \frac{\mathrm{d} }{\mathrm{d} x}(y'\frac{\partial f}{\partial y'})=y''\frac{\partial f}{\partial y'}+y'\frac{\mathrm{d} }{\mathrm{d} x}(\frac{\partial f}{\partial y'}) $
$ =\frac{\mathrm{d} f}{\mathrm{d} x}-\frac{\partial f}{\partial x}-y'\frac{\partial f}{\partial y}+y'\frac{\mathrm{d} }{\mathrm{d} x}(\frac{\partial f}{\partial y'}) $
$ =\frac{\mathrm{d} f}{\mathrm{d} x}-\frac{\partial f}{\partial x}+y'(\frac{\mathrm{d} }{\mathrm{d} x}\frac{\partial f}{\partial y'}-\frac{\partial f}{\partial y}) $
$ =\frac{\mathrm{d} f}{\mathrm{d} x}-\frac{\partial f}{\partial x} $
$ \therefore \frac{\partial f}{\partial x}-\frac{\mathrm{d} }{\mathrm{d} x}(f-y'\frac{\partial f}{\partial y'})=0 $: 2nd Form of Euler's Equation
f does not depend explicitly on x, and $ \frac{\partial f}{\partial x}=0 $
$ \Rightarrow f-y'\frac{\partial f}{\partial y'}=0 $
'math for physics > Calculus of Variation' 카테고리의 다른 글
Calculus of Variation (6) - Delta Notation (0) | 2021.08.27 |
---|---|
Calculus of Variation (5) - with Auxiliary Conditions (0) | 2021.08.26 |
Calculus of Variation (4) - Functions with Several Dependent Variables (0) | 2021.08.25 |
Calculus of Variation (2) - Euler's Equation (0) | 2021.08.23 |
Calculus of Variation (1) - Calculus of Variation (0) | 2021.08.21 |