Calculus of Variation 카테고리는 <Classical Dynamics of Particles and Systems>5th (Marion)의 chapter 6 순서를 따라갑니다
1. Calculus of Variation
find an extreme solution (max or min)
$ J=\int_{x_{1}}^{x_{2}}f(y(x),y'(x);x)dx $ ($ y'\equiv \frac{\mathrm{d} y}{\mathrm{d} x} $ )
(x: independent variable,
y: dependent variable)
$ y=y(\alpha ,x) $
$ \alpha =0 \rightarrow y=y(0,x)=y(x) $: function that yields an extreme for J
$ \Rightarrow y=y(\alpha ,x)=y(0,x)+\alpha \eta (x) $ ($ \eta (x_{1})=\eta (x_{2})=0 $: at the endpoint)

$ J(\alpha )=\int_{x_{1}}^{x_{2}}f(y(\alpha ,x),y'(\alpha ,x);x)dx $
$ \frac{\partial J}{\partial \alpha }|_{\alpha =0}=0 $: necessary condition (not sufficient)
'math for physics > Calculus of Variation' 카테고리의 다른 글
Calculus of Variation (6) - Delta Notation (0) | 2021.08.27 |
---|---|
Calculus of Variation (5) - with Auxiliary Conditions (0) | 2021.08.26 |
Calculus of Variation (4) - Functions with Several Dependent Variables (0) | 2021.08.25 |
Calculus of Variation (3) - 2nd Form of the Euler Equation (0) | 2021.08.24 |
Calculus of Variation (2) - Euler's Equation (0) | 2021.08.23 |