5. Functions with Several Dependent Variables
$ f=f(y_{1}(x),y_{1}'(x),y_{2}(x),y_{2}'(x), ... ;x) $
$ \Rightarrow f=f(y_{i}(x),y_{i}'(x);x), i=1,2,...,m $
$ y_{i}(\alpha ,x)=y_{i}(0,x)+\alpha \eta _{i}(x) $
$ \frac{\partial J}{\partial \alpha }=\int_{x_{1}}^{x_{2}}\sum_{i}(\frac{\partial f}{\partial y_{i}}-\frac{\mathrm{d} }{\mathrm{d} x}\frac{\partial f}{\partial y_{i}'})\eta _{i}(x) dx=0 $
$ \therefore \frac{\partial f}{\partial y_{i}}-\frac{\mathrm{d} }{\mathrm{d} x}\frac{\partial f}{\partial y_{i}'}=0 (i=1,2,...,m) $
'math for physics > Calculus of Variation' 카테고리의 다른 글
Calculus of Variation (6) - Delta Notation (0) | 2021.08.27 |
---|---|
Calculus of Variation (5) - with Auxiliary Conditions (0) | 2021.08.26 |
Calculus of Variation (3) - 2nd Form of the Euler Equation (0) | 2021.08.24 |
Calculus of Variation (2) - Euler's Equation (0) | 2021.08.23 |
Calculus of Variation (1) - Calculus of Variation (0) | 2021.08.21 |