Processing math: 100%

Reduction 3

Second-Order Linear ODE (1) - Basic

1. Homogeneous Linear ODE of Second Order y+p(x)y+q(x)y=r(x){r=0(homo)r0(nonhomo) L=d2dx2+pddx+q L(y)=r(x) L(αy1+βy2)=(αy1+βy2)+p(αy1+βy2)+q(αy1+βy2) $ =\alpha y_{1}''+\beta y_{2}''+p\alpha y..

First-Order ODE (3) - Linear ODE

6. Linear f(αx+βy)=αf(x)+βf(y): Linear y+p(x)y=r(x){r=0(homo)r0(nonhomo) L=ddx+p L(y)=r(x) L(αy1+βy2)=ddx(αy1+βy2)+p(αy1+βy2)=αy1+βy2+pαy1+pβy2 $ =\alpha (y_..

First-Order ODE (1) - Separable ODE

Ordinary Differential Equation 카테고리는 10th (Erwin Kreyszig)의 순서를 따라갑니다 1. Basic Concepts Physical System → Mathematical Model → Mathematical Solution → Physical Interpretation Ordinary Differential Equation Order(n) First-Order ODE: F(x,y,y)=0,y=f(x,y) General Solution: containing an arbitrary constant c Particular Solution: not containing an arbitrary constant c Initial Value Problem: $ y..

1