Ordinary Differential Equation 카테고리는 <Advanced Engineering Mathematics>10th (Erwin Kreyszig)의 순서를 따라갑니다
1. Basic Concepts
Physical System → Mathematical Model → Mathematical Solution → Physical Interpretation
Ordinary Differential Equation
Order(n)
First-Order ODE: $ F(x,y,y')=0, y'=f(x,y) $
General Solution: containing an arbitrary constant c
Particular Solution: not containing an arbitrary constant c
Initial Value Problem: $ y'=f(x,y), y(x_{0})=y_{0} $
2. Separable ODE
$ y'=\frac{\mathrm{d} y}{\mathrm{d} x} $
$ g(y)y'=f(x) $
$ g(y)\frac{\mathrm{d} y}{\mathrm{d} x}=f(x) $
$ g(y){\mathrm{d} y}=f(x){\mathrm{d} x} $
$ \int g(y){\mathrm{d} y}=\int f(x){\mathrm{d} x}+c $
ex) $ y'=1+y^{2} $
$ \frac{{\mathrm{d} y}}{1+y^{2}}={\mathrm{d} x} $
$ \int \frac{{\mathrm{d} y}}{1+y^{2}}=\int {\mathrm{d} x} $
$ \tan^{-1}y=x+c $
$ \therefore y=\tan (x+c) $
3. Reduction to Separable Form
$ y'=f(\frac{y}{x}) $
$ \frac{y}{x}=u \rightarrow y=ux $
$ y'=u'x+u=f(u) $
$ u'x=f(u)-u $
$ \frac{{\mathrm{d} u}}{f(u)-u}=\frac{{\mathrm{d} x}}{x} $
$ \int \frac{{\mathrm{d} u}}{f(u)-u}=\int \frac{{\mathrm{d} x}}{x}+c $
'math for physics > Ordinary Differential Equation' 카테고리의 다른 글
Second-Order Linear ODE (3) - Free Oscillaion (0) | 2021.08.14 |
---|---|
Second-Order Linear ODE (2) - Constant Coefficients (0) | 2021.08.13 |
Second-Order Linear ODE (1) - Basic (0) | 2021.08.12 |
First-Order ODE (3) - Linear ODE (0) | 2021.08.11 |
First-Order ODE (2) - Exact ODE (0) | 2021.08.10 |