6. Free Oscillation of a Mass Spring System - Undamped
Small Damping & Short Time → Disregard Damping
$ my''+ky=0 $ (k: spring constant)
$ y''+\frac{k}{m}y=0 $
$ y''+\omega _{0}^{2}y=0 $ ($ \omega _{0}=\sqrt{\frac{k}{m}} $)
$ y=e^{\lambda t} \rightarrow \lambda ^{2}+\omega _{0}^{2}=0 \rightarrow \lambda =\pm \omega _{0}i $
$ \therefore y(t)=A\cos \omega _{0}t+B\sin \omega _{0}t $
$ =\sqrt{A^{2}+B^{2}}(\cos \omega _{0}t\frac{A}{\sqrt{A^{2}+B^{2}}}+\sin \omega _{0}t\frac{B}{\sqrt{A^{2}+B^{2}}})={\sqrt{A^{2}+B^{2}}}\cos (\omega _{0}t-\delta ) $
7. Free Oscillation of a Mass Spring System - Damped
$ my''+cy'+ky=0 (c,k,m>0) $
$ y''+\frac{c}{m}y'+\frac{k}{m}y=0 $
$ y=e^{\lambda t} \rightarrow \lambda^{2}+\frac{c}{m}\lambda+\frac{k}{m}=0 $
$ \lambda =-\frac{c}{2m}\pm \frac{\sqrt{c^{2}-4mk}}{2m}=-\alpha \pm \beta (\alpha >0, \beta >0) $
1) Two Distinct Real Root(Overdamping)
$ c^{2}>4mk $
$ \frac{c}{2m}>\frac{\sqrt{c^{2}-4mk}}{2m} \rightarrow \alpha > \beta $
$ \lambda _{1}=-\alpha +\beta, \lambda _{2}=-\alpha -\beta $
$ \therefore y(t)=c_{1}e^{(-\alpha +\beta)t}+c_{2}e^{(-\alpha -\beta)t} $
$ \lim_{t\to \infty}y=0 $
2) Real Double Root(Critical Damping)
$ c^{2}=4mk $
$ \lambda _{1}=\lambda _{2}=-\alpha $
$ \therefore y(t)=(c_{1}+c_{2}t)e^{-\alpha t} $
$ \lim_{t\to \infty}y=0 $
3) Complex Root(Underdamping)
$ c^{2}<4mk $
$ \lambda =-\frac{c}{2m}\pm \frac{\sqrt{c^{2}-4mk}}{2m}=-\alpha \pm i\omega ^{*} $ ($ \omega ^{*}=\frac{\sqrt{c^{2}-4mk}}{2m} $)
$ \therefore y(t)=e^{-\alpha t}(\cos \omega ^{*}t+\sin \omega ^{*}t) $
$ \lim_{t\to \infty}y=0 $
'math for physics > Ordinary Differential Equation' 카테고리의 다른 글
Second-Order Linear ODE (5) - Existence and Uniqueness of Solution (0) | 2021.08.17 |
---|---|
Second-Order Linear ODE (4) - Euler-Cauchy Equation (0) | 2021.08.16 |
Second-Order Linear ODE (2) - Constant Coefficients (0) | 2021.08.13 |
Second-Order Linear ODE (1) - Basic (0) | 2021.08.12 |
First-Order ODE (3) - Linear ODE (0) | 2021.08.11 |