9. Existence and Uniqueness of Solution
$ y''+py'+qy=0 $
$ y(x_{0})=K_{0}, y'(x_{0})=K_{1} $
Theorem 1) Existence and Uniqueness Theorem for Initial Value Problems
p, q: continuous on I ($ x_{0}\in I $)
Then $ y''+py'+qy=0 $ ($ y(x_{0})=K_{0}, y'(x_{0})=K_{1} $) has a unique solution on I.
Theorem 2) Linear Dependence and Independence of Solutions
i) $ y_{1}, y_{2} $: Linearly Dependent $ \Leftrightarrow W=W(y_{1}, y_{2})=y_{1}y_{2}'-y_{1}'y_{2}=0 $ for some $ x_{0}\in I $
ii) If W=0 at $ x=x_{0}\in I \Rightarrow $ W=0 for all $ x\in I $
Theorem 3) Existence of a General Solution
p, q: continuous on I
Then $ y''+py'+qy=0 $ has a general solution on I.
Theorem 4) A General Solution Includes All Solutions
p, q: continuous on I
Then every solution $ y=Y(x)=C_{1}y_{1}(x)+C_{2}y_{2}(x) $
$ y_{1}, y_{2}$: any basis of solutions
Hence $ y''+py'+qy=0 $ does not have singular solutions
'math for physics > Ordinary Differential Equation' 카테고리의 다른 글
Second-Order Linear ODE (7) - Forced Oscillation (0) | 2021.08.19 |
---|---|
Second-Order Linear ODE (6) - Nonhomogeneous ODE (0) | 2021.08.18 |
Second-Order Linear ODE (4) - Euler-Cauchy Equation (0) | 2021.08.16 |
Second-Order Linear ODE (3) - Free Oscillaion (0) | 2021.08.14 |
Second-Order Linear ODE (2) - Constant Coefficients (0) | 2021.08.13 |