6. Linear $ f(\alpha x+\beta y)=\alpha f(x)+\beta f(y) $: Linear $ y'+p(x)y=r(x) \left\{\begin{matrix} r=0 (homo)\\ r\neq 0 (non-homo) \end{matrix}\right. $ $ L=\frac{\mathrm{d} }{\mathrm{d} x}+p $ $ L(y)=r(x) $ $ L(\alpha y_{1}+\beta y_{2})=\frac{\mathrm{d} }{\mathrm{d} x}(\alpha y_{1}+\beta y_{2})+p(\alpha y_{1}+\beta y_{2})=\alpha y_{1}'+\beta y_{2}'+p\alpha y_{1}+p\beta y_{2} $ $ =\alpha (y_..