6. Linear
$ f(\alpha x+\beta y)=\alpha f(x)+\beta f(y) $: Linear
$ y'+p(x)y=r(x) \left\{\begin{matrix}
r=0 (homo)\\ r\neq 0 (non-homo)
\end{matrix}\right. $
$ L=\frac{\mathrm{d} }{\mathrm{d} x}+p $
$ L(y)=r(x) $
$ L(\alpha y_{1}+\beta y_{2})=\frac{\mathrm{d} }{\mathrm{d} x}(\alpha y_{1}+\beta y_{2})+p(\alpha y_{1}+\beta y_{2})=\alpha y_{1}'+\beta y_{2}'+p\alpha y_{1}+p\beta y_{2} $
$ =\alpha (y_{1}'+py_{1})+\beta (y_{2}'+py_{2})=\alpha L(y_{1})+\beta L(y_{2}) $: Linear
7. Linear ODE
$ y'+py=r $
$ \Rightarrow (py-r)dx+1dy=0 $
$ P=py-r, Q=1 $
$ R(x)=\frac{1}{Q}(P_{y}-Q_{x})=p(x) $
$ F(x)=e^{\int R(x) dx}=e^{\int p dx} $
$ e^{\int p dx}(py-r)+e^{\int p dx}y'=0 $
$ (e^{\int p dx}y)'=e^{\int p dx}r $
$ e^{\int p dx}y=\int e^{\int p dx}rdx+c $
$ e^{h}y=\int e^{h}r dx+c $ ($ \int p dx=h $)
$ \therefore y=e^{-h}(\int e^{h}r dx+c)=e^{-h}\int e^{h}r dx+ce^{-h} $
ex) $ y'+y=x^{2} $
$ p(x)=1, r(x)=x^{2} $
$ h=\int p dx=\int 1 dx=x \rightarrow e^{h}=e^{x} $
$ e^{x}(y'+y)=e^{x}x^{2} $
$ (e^{x}y)'=e^{x}x^{2} $
$ e^{x}y=(x^{2}-2x+2)e^{x}+c $
$ y=(x^{2}-2x+2)+ce^{-x} $
8. Reuction to Linear Form (Bernoulli Equation)
$ y'+p(x)y=q(x)y^{a} $: Bernoulli Equation
$ u=y^{1-a} $
$ u'=(1-a)y^{-a}y'=(1-a)y^{-a}(qy^{a}-py)=(1-a)(q-py^{1-a})=(1-a)(q-pu) $
$ u'+(1-a)pu=(1-a)q $
'math for physics > Ordinary Differential Equation' 카테고리의 다른 글
Second-Order Linear ODE (3) - Free Oscillaion (0) | 2021.08.14 |
---|---|
Second-Order Linear ODE (2) - Constant Coefficients (0) | 2021.08.13 |
Second-Order Linear ODE (1) - Basic (0) | 2021.08.12 |
First-Order ODE (2) - Exact ODE (0) | 2021.08.10 |
First-Order ODE (1) - Separable ODE (0) | 2021.08.09 |