4. Exact ODE
Total Differential
$ u(x,y)=c $
$ du=\frac{\partial u}{\partial x}dx+\frac{\partial u}{\partial y}dy=u_{x}dx+u_{y}dy=0 $
Definition
$ M(x,y)dx+N(x,y)dy=0 $ is called an Exact ODE
$ \exists u(x,y) $ s.t. $ u_{x}=M, u_{y}=N $
Theorem
$ M(x,y)dx+N(x,y)dy=0 $ is exact $ \Leftrightarrow M_{y}=N_{x} $
$ u=\int M dx+k(y)=\int N dy+l(x) $
ex) $ (e^{x}+y)dx+(x-e^{-y})dy=0 $
$ M=e^{x}+y, N=x-e^{-y} $
$ M_{y}=1=N_{x} $: exact
$ u_{x}=M, u_{y}=N $
$ u=\int M dx=e^{x}+xy+k(y) $
$ u_{y}=x+k'(y)=x-e^{-y} $
$ k'(y)=-e^{-y} \rightarrow k(y)=e^{-y}+c_{1} $
$ u=e^{x}+xy+e^{-y}+c_{1}=c_{2} $
$ \therefore e^{x}+xy+e^{-y}=c $
5. Reduction to Exact Form (Intergrating Factor)
$ P(x,y)dx+Q(x,y)dy=0 $: Nonexact
$ FPdx+FQdy=0 $: Exact ($ F(x,y) $: Intergrating Factor)
$ (FP)_{y}=(FQ)_{x} $
$ F_{y}P+FP_{y}=F_{x}Q+FQ_{x} $
i) $ F=F(x) $
$ FP_{y}=F'Q+FQ_{x} $
$ \frac{1}{F}{\mathrm{d} F}=\frac{1}{Q}(P_{y}-Q_{x}){\mathrm{d} x} $
$ F=e^{\int R(x)dx} $ ($ R(x)=\frac{1}{Q}(P_{y}-Q_{x}) $)
ii) $F^{*}=F^{*}(y) $
$ F'^{*}P+FP_{y}=FQ_{x} $
$ \frac{1}{F^{*}}{\mathrm{d} F^{*}}=\frac{1}{P}(Q_{x}-P_{y}){\mathrm{d} x} $
$ F^{*}=e^{\int R^{*}(y)dy} $ ($ R^{*}(y)=\frac{1}{P}(Q_{x}-P_{y}) $)
ex) $ (e^{x+y}+ye^{y})dx+(xe^{y}-1)dy=0 $
$ P=e^{x+y}+ye^{y}, Q=xe^{y}-1 $
$ P_{y}=e^{x+y}+e^{y}+ye^{y}, Q_{x}=e^{y} $
$ P_{y}\neq Q_{x} $: not exact
$ R(x)=\frac{1}{Q}(P_{y}-Q_{x})=\frac{1}{xe^{y}-1}(e^{x+y}+e^{y}+ye^{y}-e^{y})=\frac{e^{x+y}+ye^{y}}{xe^{y}-1} $: y가 포함되어 있음
$ R^{*}(y)=\frac{1}{P}(Q_{x}-P_{y})=\frac{1}{e^{x+y}+ye^{y}}(e^{y}-e^{x+y}-e^{y}-ye^{y})=\frac{-(e^{x+y}+ye^{y})}{e^{x+y}+ye^{y}}=-1 $
$ F^{*}=e^{\int R^{*}(y)dy}=e^{\int -1dy}=e^{-y} $: intergrating factor
$ \therefore (e^{x}+y)dx+(x-e^{-y})dy=0 $: exact
'math for physics > Ordinary Differential Equation' 카테고리의 다른 글
Second-Order Linear ODE (3) - Free Oscillaion (0) | 2021.08.14 |
---|---|
Second-Order Linear ODE (2) - Constant Coefficients (0) | 2021.08.13 |
Second-Order Linear ODE (1) - Basic (0) | 2021.08.12 |
First-Order ODE (3) - Linear ODE (0) | 2021.08.11 |
First-Order ODE (1) - Separable ODE (0) | 2021.08.09 |