linear 8

Second-Order Linear ODE (8) - Variation of Parameters

15. Variation of Parameters $ y''+py'+qy=r $ $ y(x)=y_{h}(x)+y_{p}(x)=(c_{1}y_{1}(x)+c_{2}y_{2}(x))+y_{p}(x) $ $ y_{1}''+py_{1}'+qy_{1}=0, y_{2}''+py_{2}'+qy_{2}=0 $ $ y_{p}=uy_{1}+vy_{2} $ $ y_{p}'=u'y_{1}+uy_{1}'+v'y_{2}+vy_{2}'=uy_{1}'+vy_{2}'(u'y_{1}+v'y_{2}=0) $ $ y_{p}''=u'y_{1}'+uy_{1}''+v'y_{2}'+vy_{2}'' $ $ (u'y_{1}'+uy_{1}''+v'y_{2}'+vy_{2}'')+p(uy_{1}'+vy_{2}')+q(uy_{1}+vy_{2}) $ $ =u..

Second-Order Linear ODE (7) - Forced Oscillation

12. Driving Force $ my''+cy'+ky=r(t)=F_{0}cos\omega t $ $ r(t)=F_{0}cos\omega t $: Driving Force $ y=y_{h}+y_{p} $ $ y_{p}=a\cos \omega t+b\sin \omega t $ $ y_{p}'=-\omega a\sin \omega t+\omega b\cos \omega t $ $ y_{p}''=-\omega ^{2}a\cos \omega t-\omega ^{2}b\sin \omega t $ $ \rightarrow m(-\omega ^{2}a\cos \omega t-\omega ^{2}b\sin \omega t)+c(-\omega a\sin \omega t+\omega b\cos \omega t)+k(a\..

Second-Order Linear ODE (6) - Nonhomogeneous ODE

10. Definition and Theorems $ y''+p(x)y'+q(x)y=r(x) $ Definition) A general Solution of $ y''+p(x)y'+q(x)y=r(x) $ $ \Rightarrow y=y_{h}+y_{p}=(c_{1}y_{1}+c_{2}y_{2})+y_{p} $ ($ y_{h} $: solution of $ y''+py'+qy=0 $) Theorem 1) $ y''+py'+qy=0 $: a $ y''+py'+qy=r $: b i) a의 해 + b의 해 = b의 해 ii) b의 해 - b의 해 = a의 해 $ Y_{1} $: a의 해 $ \rightarrow Y_{1}''+pY_{1}'+qY_{1}=0 $ $ Y_{2} $: b의 해 $ \rightarrow..

Second-Order Linear ODE (4) - Euler-Cauchy Equation

8. Euler-Cauchy Equation $ x^{2}y''+axy'+by=0 $ $ y=x^{m} \rightarrow y'=mx^{m-1}, y''=m(m-1)x^{m-2} $ $ \rightarrow x^{2}m(m-1)x^{m-2}+axmx^{m-1}+bx^{m}=0 $ $ x^{m}(m^{2}+(a-1)m+b)=0 $ $ m^{2}+(a-1)m+b=0 $ 1) Real Different Roots $ m=m_{1}, m_{2} $ $ x^{m_{1}}, x^{m_{2}} $: Linearly Independent $ \therefore y=c_{1}x^{m_{1}}+c_{2}x^{m_{2}} $ ex) $ x^{2}y''+xy'-9y=0 $ $ y=x^{m} \rightarrow x^{m}(..

Second-Order Linear ODE (3) - Free Oscillaion

6. Free Oscillation of a Mass Spring System - Undamped Small Damping & Short Time → Disregard Damping $ my''+ky=0 $ (k: spring constant) $ y''+\frac{k}{m}y=0 $ $ y''+\omega _{0}^{2}y=0 $ ($ \omega _{0}=\sqrt{\frac{k}{m}} $) $ y=e^{\lambda t} \rightarrow \lambda ^{2}+\omega _{0}^{2}=0 \rightarrow \lambda =\pm \omega _{0}i $ $ \therefore y(t)=A\cos \omega _{0}t+B\sin \omega _{0}t $ $ =\sqrt{A^{2}+..

Second-Order Linear ODE (2) - Constant Coefficients

4. Second-Order Linear ODE with Constant Coefficients $ y''+ay'+by=0 $ $ y=e^{\lambda x} \rightarrow y'=\lambda e^{\lambda x}, y''=\lambda^{2} e^{\lambda x} $ $ \lambda^{2} e^{\lambda x}+a\lambda e^{\lambda x}+be^{\lambda x} $ $ =(\lambda^{2}+a\lambda+b)e^{\lambda x}=0 $ $ \lambda^{2}+a\lambda+b=0 $: Characteristic Equation(Auxiliary Equation) 1) Two Distinct Real Root $ \lambda^{2}+a\lambda+b=(..