10. Definition and Theorems
$ y''+p(x)y'+q(x)y=r(x) $
Definition)
A general Solution of $ y''+p(x)y'+q(x)y=r(x) $
$ \Rightarrow y=y_{h}+y_{p}=(c_{1}y_{1}+c_{2}y_{2})+y_{p} $ ($ y_{h} $: solution of $ y''+py'+qy=0 $)
Theorem 1)
$ y''+py'+qy=0 $: a
$ y''+py'+qy=r $: b
i) a의 해 + b의 해 = b의 해
ii) b의 해 - b의 해 = a의 해
$ Y_{1} $: a의 해 $ \rightarrow Y_{1}''+pY_{1}'+qY_{1}=0 $
$ Y_{2} $: b의 해 $ \rightarrow Y_{2}''+pY_{2}'+qY_{2}=r $
$ Y_{3} $: b의 해 $ \rightarrow Y_{3}''+pY_{3}'+qY_{3}=r $
$ Y_{1}+Y_{2} \rightarrow y''+py'+qy=r $
$ \Rightarrow (Y_{1}+Y_{2})''+p(Y_{1}+Y_{2})'+q(Y_{1}+Y_{2})=(Y_{1}''+pY_{1}'+qY_{1})+(Y_{2}''+pY_{2}'+qY_{2})=r $
$ Y_{2}-Y_{3} \rightarrow y''+py'+qy=r $
$ \Rightarrow (Y_{2}-Y_{3})''+p(Y_{2}-Y_{3})'+q(Y_{2}-Y_{3})=(Y_{2}''+pY_{2}'+qY_{2})-(Y_{3}''+pY_{3}'+qY_{3})=0 $
Theorem 2)
p, q, r: continuous on I
Then exery solution of $ y''+p(x)y'+q(x)y=r(x) $ ← assigning suitable values to $ c_{1}, c_{2} $ in $ y=y_{h}+y_{p}=(c_{1}y_{1}+c_{2}y_{2})+y_{p} $
11. Method of Undetermined Coefficients
$ y''+py'+qy=r $
$ y=y_{h}+y_{p} $
1) Basic Rule: $ y_{p} $ is related to $ r(x) $
$ r(x) $ | $ y_{p} $ |
$ ke^{\gamma x} $ | $ ce^{\gamma x} $ |
$ kx^{n} (n=0,1,...) $ | $ c_{n}x^{n}+c_{n-1}x^{n-1}+...+c_{1}x+c_{0} $ |
$ k\cos \omega x $ | $ A\cos \omega x+B\sin \omega x $ |
$ k\sin \omega x $ | |
$ ke^{\alpha x}\cos \omega x $ | $ ke^{\alpha x}(A\cos \omega x+B\sin \omega x) $ |
$ ke^{\alpha x}\sin \omega x $ |
2) Modification Rule: If $ y_{p} $ is included in $ y_{h} $, then multiply $ y_{p} $ by $ x $ or $ x^{2} $
3) Sum Rule: If $ r(x) $ is a sum of functions, then choose for $ y_{p} $ the sum
ex) $ y''+3y'+2.25y=-10e^{-1.5x} $
$ y=y_{h}+y_{p} $
i) $ y_{h} $: $ y=(c_{1}+c_{2}x)e^{-1.5x} $
ii) $ y_{p} $: $ y=\alpha x^{2}e^{-1.5x} $
$ y'=2\alpha xe^{-1.5x}-1.5\alpha x^{2}e^{-1.5x} $
$ y''=2\alpha e^{-1.5x}-3\alpha xe^{-1.5x}-3\alpha xe^{-1.5x}+2.25\alpha x^{2}e^{-1.5x} $
$ y''+3y'+2.25y $
$ =e^{-1.5x}(2\alpha -6\alpha x+2.25\alpha x^{2})+e^{-1.5x}(6\alpha x-4.5\alpha x^{2})+e^{-1.5x}(2.25\alpha x^{2}) $
$ =2\alpha e^{-1.5x}=-10e^{-1.5x} $
$ \rightarrow \alpha =-5 $
$ \rightarrow y_{p}=-5x^{2}e^{-1.5x} $
$ \therefore y=y_{h}+y_{p}=(c_{1}+c_{2}x)e^{-1.5x}-5x^{2}e^{-1.5x} $
'math for physics > Ordinary Differential Equation' 카테고리의 다른 글
Second-Order Linear ODE (8) - Variation of Parameters (0) | 2021.08.20 |
---|---|
Second-Order Linear ODE (7) - Forced Oscillation (0) | 2021.08.19 |
Second-Order Linear ODE (5) - Existence and Uniqueness of Solution (0) | 2021.08.17 |
Second-Order Linear ODE (4) - Euler-Cauchy Equation (0) | 2021.08.16 |
Second-Order Linear ODE (3) - Free Oscillaion (0) | 2021.08.14 |