7. Delta Notation
$ \frac{\partial J}{\partial \alpha }d\alpha =\int_{x_{1}}^{x_{2}}(\frac{\partial f}{\partial y}-\frac{\mathrm{d} }{\mathrm{d} x}\frac{\partial f}{\partial y'})\frac{\partial y}{\partial \alpha }d\alpha dx $
$ \Rightarrow \delta J=\int_{x_{1}}^{x_{2}}(\frac{\partial f}{\partial y}-\frac{\mathrm{d} }{\mathrm{d} x}\frac{\partial f}{\partial y'})\delta y dx $ ($ \frac{\partial J}{\partial \alpha }d\alpha\equiv \delta J, \frac{\partial y}{\partial \alpha }d\alpha \equiv \delta y $)
extreme condition: $ \delta J=\delta \int_{x_{1}}^{x_{2}}f(y,y';x)dx=0 $
$ \delta J=\int_{x_{1}}^{x_{2}}\delta f dx $
$ =\int_{x_{1}}^{x_{2}}(\frac{\partial f}{\partial y}\delta y+\frac{\partial f}{\partial y'}\delta y')dx $
$ =\int_{x_{1}}^{x_{2}}(\frac{\partial f}{\partial y}\delta y+\frac{\partial f}{\partial y'}\frac{\mathrm{d} }{\mathrm{d} x}(\delta y))dx $ ($ \because \delta y'=\delta (\frac{\mathrm{d} y}{\mathrm{d} x})=\frac{\mathrm{d} }{\mathrm{d} x}(\delta y) $)
$ =\int_{x_{1}}^{x_{2}}\frac{\partial f}{\partial y}\delta y dx+(\frac{\partial f}{\partial y'}\delta y-\int_{x_{1}}^{x_{2}}\delta y\frac{\mathrm{d} }{\mathrm{d} x}\frac{\partial f}{\partial y'} dx) $
$ =\int_{x_{1}}^{x_{2}}(\frac{\partial f}{\partial y}-\frac{\mathrm{d} }{\mathrm{d} x}\frac{\partial f}{\partial y'})\delta y dx=0 $
$ \delta y $: arbitrary
$ \therefore \frac{\partial f}{\partial y}-\frac{\mathrm{d} }{\mathrm{d} x}\frac{\partial f}{\partial y'}=0 $: Euler Equation
'math for physics > Calculus of Variation' 카테고리의 다른 글
Calculus of Variation (5) - with Auxiliary Conditions (0) | 2021.08.26 |
---|---|
Calculus of Variation (4) - Functions with Several Dependent Variables (0) | 2021.08.25 |
Calculus of Variation (3) - 2nd Form of the Euler Equation (0) | 2021.08.24 |
Calculus of Variation (2) - Euler's Equation (0) | 2021.08.23 |
Calculus of Variation (1) - Calculus of Variation (0) | 2021.08.21 |