50. Vector Integration
$ \vec{A}=\vec{A}(x_{i}) $
1) Volume Integral
$ \int_{V}^{}\vec{A}dv=(\int_{V}^{}A_{1}dv, \int_{V}^{}A_{2}dv, \int_{V}^{}A_{3}dv) $
2) Surface Integral
$ \int_{S}^{}\vec{A}\cdot d\vec{a}=\int_{S}^{}\vec{A}\cdot \hat{n}da=\int_{S}^{}\sum_{i}^{}A_{i}da_{i} $
(Outward Normal is positive.)
3) Line Integral
$ \int_{BC}^{}\vec{A}\cdot d\vec{s}=\int_{BC}^{}\sum_{i}^{}A_{i}dx_{i} $
51. Some Theorems
1) Green's Theorem (Double Integral ↔ Line Integral)
$ \iint_{R}^{}(\frac{\partial A_{2}}{\partial x}-\frac{\partial A_{1}}{\partial y})dxdy=\oint_{C}^{}(A_{1}dx+A_{2}dy) $
2) Stokes' Theorem (Line Integral ↔ Surface Integral)
$ \int_{C}^{}\vec{A}\cdot d\vec{s}=\int_{S}^{}(\vec{\bigtriangledown }\times \vec{A})\cdot d\hat{a} $
3) Divergence Theorem (Gauss' Theorem) (Surface Integral ↔ Volume Integral)
$ \int_{S}^{}\vec{A}\cdot d\vec{a}=\int_{S}^{}(\vec{\bigtriangledown }\cdot \vec{A})dv $
'math for physics > vector calculus' 카테고리의 다른 글
Vector Calculus (14) Gradient (0) | 2021.07.30 |
---|---|
Vector Calculus (13) - Angular Velocity (0) | 2021.07.28 |
Vector Calculus (12) - Velocity, Acceleration (0) | 2021.07.27 |
Vector Calculus (11) - Differentiation (0) | 2021.07.26 |
Vector Calculus (10) - Vector Product (0) | 2021.07.23 |