math for physics/vector calculus

Vector Calculus (6) - Geometric Significance of Transformation Matrices

이너피스! 2021. 7. 19. 18:02

13. Rotating Coordinate Axes

 

1) Counterclockwise about the $ x_{3} $-axis

$ x_{1}'=x_{2}, x_{2}'=-x_{1}, x_{3}'=x_{3} $

$ \lambda _{11}=\lambda _{13}=\lambda _{22}=\lambda _{23}=\lambda _{31}=\lambda _{32}=0 $

$ \lambda _{12}=\cos (x_{1}',x_{2})=1 $

$ \lambda _{21}=\cos (x_{2}',x_{1})=-1 $

$ \lambda _{33}=\cos (x_{3}',x_{3})=1 $

$ \Rightarrow \vec{\lambda_{1}} =\bigl(\begin{smallmatrix}
0 & 1 & 0\\ 
-1 & 0 & 0\\ 
0 & 0 & 1
\end{smallmatrix}\bigr) $

 

2) Counterclockwise about the $ x_{1} $-axis

$ x_{1}'=x_{1}, x_{2}'=x_{3}, x_{3}'=-x_{2} $

$ \lambda _{12}=\lambda _{13}=\lambda _{21}=\lambda _{22}=\lambda _{31}=\lambda _{33}=0 $

$ \lambda _{11}=\cos (x_{1}',x_{1})=1 $
$ \lambda _{23}=\cos (x_{2}',x_{3})=1 $
$ \lambda _{32}=\cos (x_{3}',x_{2})=-1 $

$ \Rightarrow \vec{\lambda_{2}} =\bigl(\begin{smallmatrix}
1 & 0 & 0\\ 
0 & 0 & 1\\ 
0 & -1 & 0
\end{smallmatrix}\bigr) $

 

3) Combined Trnasformation about the $ x_{3} $-axis followed by $ x_{1}' $-axis

$ x_{1}''=x_{2}, x_{2}''=x_{3}, x_{3}''=x_{1} $

$ \vec{X}'=\lambda _{1}\vec{X} $ and $ \vec{X}''=\lambda _{2}\vec{X}' $

$ \vec{X}''=\lambda _{2}\lambda _{1}\vec{X} $

$ \bigl(\begin{smallmatrix}
x_{1}''\\ x_{2}''
\\ x_{3}''
\end{smallmatrix}\bigr)=\bigl(\begin{smallmatrix}
1 & 0 & 0\\ 
0 & 0 & 1\\ 
0 & -1 & 0
\end{smallmatrix}\bigr) \bigl(\begin{smallmatrix}
0 & 1 & 0\\ 
-1 & 0 & 0\\ 
0 & 0 & 1
\end{smallmatrix}\bigr) \bigl(\begin{smallmatrix}
x_{1}\\ x_{2}
\\ x_{3}
\end{smallmatrix}\bigr)=\bigl(\begin{smallmatrix}
0 & 1 & 0\\ 
0 & 0 & 1\\ 
1 & 0 & 0
\end{smallmatrix}\bigr) \bigl(\begin{smallmatrix}
x_{1}\\ x_{2}
\\ x_{3}
\end{smallmatrix}\bigr)=\bigl(\begin{smallmatrix}
x_{2}\\ x_{3}
\\ x_{1}
\end{smallmatrix}\bigr) $

$ \Rightarrow \vec{\lambda _{3}}=\vec{\lambda _{2}}\vec{\lambda _{1}}=\bigl(\begin{smallmatrix}
0 & 1 & 0\\ 
0 & 0 & 1\\ 
1 & 0 & 0
\end{smallmatrix}\bigr) $

 

In the other order

$ \vec{\lambda _{4}}=\vec{\lambda _{1}}\vec{\lambda _{2}}=\bigl(\begin{smallmatrix}
0 & 1 & 0\\ 
-1 & 0 & 0\\ 
0 & 0 & 1
\end{smallmatrix}\bigr) \bigl(\begin{smallmatrix}
1 & 0 & 0\\ 
0 & 0 & 1\\ 
0 & -1 & 0
\end{smallmatrix}\bigr) =\bigl(\begin{smallmatrix}
0 & 0 & 1\\ 
-1 & 0 & 0\\ 
0 & -1 & 0
\end{smallmatrix}\bigr)\neq \vec{\lambda _{3}} $

: Matrix Calculation은 operate하는 순서에 따라 결과 값이 바뀐다

 

4) Rotating about the $ x_{3} $-axis

$ \Theta $만큼 회전

$ \lambda _{13}=\lambda _{23}=\lambda _{31}=\lambda _{32}=0 $

$ \lambda _{33}=\cos (x_{3}',x_{3})=1 $

$ \lambda _{11}=\cos (x_{1}',x_{1})=\cos \Theta  $

$ \lambda _{12}=\cos (x_{1}',x_{2})=\cos (\frac{\pi }{2}-\Theta )=\sin \Theta  $

$ \lambda _{21}=\cos (x_{2}',x_{1})=\cos (\frac{\pi }{2}+\Theta )=-\sin \Theta  $

$ \lambda _{22}=\cos (x_{2}',x_{2})=\cos \Theta  $

$ \Rightarrow \lambda _{5}=\bigl(\begin{smallmatrix}
\cos \Theta  & \sin \Theta  & 0\\ 
-\sin \Theta  & \cos \Theta  & 0\\ 
0 & 0 & 1
\end{smallmatrix}\bigr) $

 

 

14. Inversion

$ x_{1}'=-x_{1}, x_{2}'=-x_{2}, x_{3}'=-x_{3} $

$ \lambda _{12}=\lambda _{13}=\lambda _{21}=\lambda _{23}=\lambda _{31}=\lambda _{32}=0 $

$ \lambda _{11}=\lambda _{22}=\lambda _{33}=-1 $

$ \Rightarrow \lambda _{6}=\bigl(\begin{smallmatrix}
\ -1  & \ 0 & 0\\ 
0 & -1 & 0\\ 
0 & 0 & -1
\end{smallmatrix}\bigr) $

 

 

15. Orthogonal Transformation

 

Succesive application of orthogonal transformations always results in an orthogonal transformation.

 

$ x_{i}'=\sum_{j}^{}\lambda _{ij}x_{j} $ and $ x_{k}''=\sum_{i}^{}\mu _{ki}x_{i}' $

$ x_{k}''=\sum_{j}^{}(\sum_{i}^{}\mu _{ki}\lambda _{ij})x_{j}=\sum_{j}^{}[\mu \lambda ]_{kj}x_{j} $

($ \vec{\lambda}^{t}=\vec{\lambda}^{-1}, \vec{\mu }^{t}=\vec{\mu}^{-1} $: orthogonal)

 

$ (\vec{\mu}\vec{\lambda})^{t}\vec{\mu}\vec{\lambda}=\vec{\lambda}^{t}\vec{\mu}^{t}\vec{\mu}\vec{\lambda}=\vec{\lambda}^{t}\vec{1}\vec{\lambda}=\vec{\lambda}^{t}\vec{\lambda}=\vec{1} $

$ \Rightarrow (\vec{\mu}\vec{\lambda})^{t}\vec{\mu}\vec{\lambda}=(\vec{\mu}\vec{\lambda})^{-1}\vec{\mu}\vec{\lambda} $

$ \Rightarrow (\vec{\mu}\vec{\lambda})^{t}=(\vec{\mu}\vec{\lambda})^{-1} $: orthogonal

 

 

16. Determinant

 

$ |\vec{\lambda }|=\begin{vmatrix}
\lambda _{11} & \lambda _{12}\\ 
\lambda _{21} & \lambda _{22}
\end{vmatrix}=\lambda _{11}\lambda _{22}-\lambda _{12}\lambda _{21} $

 

$ |\vec{\lambda }|=\begin{vmatrix}
\lambda _{11} & \lambda _{12} & \lambda _{13} \\ 
\lambda _{21} & \lambda _{22} & \lambda _{23}\\
\lambda _{31} & \lambda _{32} & \lambda _{33}
\end{vmatrix}=\lambda _{11} \begin{vmatrix}
\lambda _{22} & \lambda _{23}\\ 
\lambda _{32} & \lambda _{33}
\end{vmatrix}-\lambda _{12} \begin{vmatrix}
\lambda _{21} & \lambda _{23}\\ 
\lambda _{31} & \lambda _{33}
\end{vmatrix}+\lambda _{13} \begin{vmatrix}
\lambda _{21} & \lambda _{22}\\ 
\lambda _{31} & \lambda _{32}
\end{vmatrix} $

 

$ |\vec{\lambda_{1}}|=|\vec{\lambda_{2}}|=|\vec{\lambda_{3}}|=|\vec{\lambda_{4}}|=|\vec{\lambda_{5}}|=1 $: Proper Rotation

$ |\vec{\lambda_{6}}|=-1 $: Improper Rotation