8. Kind of Matrix
Matrix: set을 만들기(필요로 하는 물리량을 하나의 괄호 안에)
Square Matrix: n x n
Column Matrix: →X=(x1x2x3)
Row Matrix: →X=(x1x2x3)
9. Multiply Tow Matrices
→C=→A→B
Cij=[→A→B]ij=∑kAikBkj
number of columns of →A= number of rows of →B
(i rows and k columns) x (k rows and j columns) = (i rows and j columns)
일반적으로 →A→B≠→B→A 이다.
ex)
→A→B=(αβγδϵζ)(ηθικλμνξo)
→C=→A→B=(αη+βκ+γναθ+βλ+γξαι+βμ+γoδη+ϵκ+ζνδθ+ϵλ+ζξδι+ϵμ+ζo)

ex) Coordinate Transformation
x′i=∑jλijxj
⇒→X′=→λ→x
(x′1x′2x′3)=(λ11λ12λ13λ21λ22λ23λ31λ32λ33)(x1x2x3)
x′1=λ11x1+λ12x2+λ13x3
x′2=λ21x1+λ22x2+λ23x3
x′3=λ31x1+λ32x2+λ33x3
'math for physics > vector calculus' 카테고리의 다른 글
Vector Calculus (6) - Geometric Significance of Transformation Matrices (0) | 2021.07.19 |
---|---|
Vector Calculus (5) - Properties of Matrix (0) | 2021.07.16 |
Vector Calculus (3) - Properties of Rotation Matrices (0) | 2021.07.14 |
Vector Calculus (2) - Coordinate Transformation (0) | 2021.07.13 |
Vector Calculus (1) - Scalar, Vector (0) | 2021.07.12 |