3. Coordinate Transformation
$ P(x_{1},x_{2}) \rightarrow P(x_{1}',x_{2}') $
$ x_{1}'=\overline{Oa}+(\overline{ab}+\overline{bc})=x_{1}\cos \Theta +x_{2}\sin \Theta $
$ x_{2}'=\overline{Od}-\overline{de}=-x_{1}\sin \Theta +x_{2}\cos \Theta $
$ \sin \Theta =\cos (\frac{\pi }{2}-\Theta) $ 를 이용하면, cos에 대한 식으로 만들 수 있다.
그리고 축이 회전하는 대신, 점 P가 반대 방향으로 회전한다고 생각해도 된다.
polar coordinate: $ P(r,\alpha ) $
$ x_{1}=r\cos \alpha , x_{2}=r\sin \alpha $
$ x_{1}'=r\cos (\alpha-\Theta )=r\cos \alpha \cos \Theta + r\sin \alpha \sin \Theta=x_{1}\cos \Theta + x_{2}\sin \Theta $
$ x_{2}'=r\sin (\alpha-\Theta )=r\sin \alpha \cos \Theta - r\cos \alpha \sin \Theta=-x_{1}\sin \Theta + x_{2}\cos \Theta $
4. Direction Cosine, Transformation Matrix(Rotation Matrix)
$ (x_{i}',x_{j}) $ : angle between the $ x_{i}' $-axis and $ x_{j} $-axis
$ \lambda _{ij}\equiv \cos (x_{i}',x_{j}) $ : direction cosine
$ \lambda _{11}=\cos (x_{1}',x_{1})=\cos \Theta $
$ \lambda _{12}=\cos (x_{1}',x_{2})=\cos (\frac{\pi }{2}-\Theta) =\sin \Theta $
$ \lambda _{21}=\cos (x_{2}',x_{1})=\cos (\frac{\pi }{2}+\Theta) =-\sin \Theta $
$ \lambda _{22}=\cos (x_{2}',x_{2})=\cos\Theta $
$ x_{1}'=x_{1}\cos (x_{1}',x_{1})+x_{2}\cos (x_{1}',x_{2})=\lambda _{11}x_{1}+\lambda _{12}x_{2} $
$ x_{2}'=x_{1}\cos (x_{2}',x_{1})+x_{2}\cos (x_{2}',x_{2})=\lambda _{21}x_{1}+\lambda _{22}x_{2} $
for three dimensions
$ x_{i}'=\sum_{j=1}^{3}\lambda _{ij}x_{j} (i=1,2,3) $
$ \bigl(\begin{smallmatrix}
x_{1}'\\ x_{2}'
\\ x_{3}'
\end{smallmatrix}\bigr)
=\lambda \bigl(\begin{smallmatrix}
x_{1} \\ x_{2}
\\ x_{3}
\end{smallmatrix}\bigr) $
$ \lambda =\bigl(\begin{smallmatrix}
\lambda _{11} & \lambda _{12} & \lambda _{13}\\
\lambda _{21} & \lambda _{22} & \lambda _{23}\\
\lambda _{31} & \lambda _{32} & \lambda _{33}
\end{smallmatrix}\bigr) $ : Transformation Matrix(Rotation Matrix)
5. Inverse Transformation
$ x_{i}=\sum_{j=1}^{3}\lambda _{ji}x_{j}' $
'math for physics > vector calculus' 카테고리의 다른 글
Vector Calculus (6) - Geometric Significance of Transformation Matrices (0) | 2021.07.19 |
---|---|
Vector Calculus (5) - Properties of Matrix (0) | 2021.07.16 |
Vector Calculus (4) - Matrix Operation (0) | 2021.07.15 |
Vector Calculus (3) - Properties of Rotation Matrices (0) | 2021.07.14 |
Vector Calculus (1) - Scalar, Vector (0) | 2021.07.12 |