6. Properties of Rotation Matrices

$ (\alpha ,\beta ,\gamma )\rightarrow (\alpha ',\beta ',\gamma ') $
$ (x_{1},x_{2},x_{3}) $ coordinate에서 $ \Theta $ 만큼 회전한 $ (x_{1}',x_{2}',x_{3}') $ coordinate
1) $ \cos ^{2}\alpha +\cos ^{2}\beta +\cos ^{2}\gamma =1 $
$ x_{1}=r\cos \alpha , x_{2}=r\cos \beta , x_{3}=r\cos \gamma $
$ r^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=r^{2}\cos ^{2}\alpha +r^{2}\cos ^{2}\beta +r^{2}\cos ^{2}\gamma $
$ \therefore \cos ^{2}\alpha +\cos ^{2}\beta +\cos ^{2}\gamma=1 $
2) $ \cos \theta =\cos \alpha \cos \alpha '+\cos \beta \cos \beta \alpha '+\cos \gamma \cos \gamma ' $
$ x_{1}'=r'\cos \alpha' , x_{2}'=r'\cos \beta' , x_{3}'=r'\cos \gamma' $
$ r^{2}+r'^{2}-2rr'\cos \Theta = (x_{1}-x_{1}')^{2}+(x_{2}-x_{2}')^{2}+(x_{3}-x_{3}')^{2} $
$ rr'\cos \Theta = x_{1}x_{1}'+x_{2}x_{2}'+x_{3}x_{3}' $
$ \therefore \cos \theta =\cos \alpha \cos \alpha '+\cos \beta \cos \beta '+\cos \gamma \cos \gamma ' $
7. Kronecker Delta
$ (\lambda _{11},\lambda _{12},\lambda _{13}) $ : direction cosines of the $ x_{1}' $-axis in the $ (x_{1},x_{2},x_{3}) $ system
$ (\lambda _{21},\lambda _{22},\lambda _{23}) $ : direction cosines of the $ x_{2}' $-axis in the $ (x_{1},x_{2},x_{3}) $ system
$ \lambda _{11}\lambda _{21}+\lambda _{12}\lambda _{22}+\lambda _{13}\lambda _{23}=\cos \Theta =\cos \frac{\pi }{2}=0 $
$ \Rightarrow \sum_{j}^{}\lambda _{ij}\lambda _{kj}=0 $, if $ i\neq k $
$ \lambda_{11}^{2}+\lambda_{12}^{2}+\lambda_{13}^{2}=\cos \Theta =\cos 0=1 $
$ \Rightarrow \sum_{j}^{}\lambda _{ij}\lambda _{kj}=1 $, if $ i=k $
Kronecker Delta Symbol: $ \delta _{ik} $
$ \sum_{j}^{}\lambda _{ij}\lambda _{kj}=\delta _{ik} $: Orthogonality Condition
$ \delta _{ik}=\left\{\begin{matrix}
0 (i\neq k) \\
1 (i= k)
\end{matrix}\right. $
'math for physics > vector calculus' 카테고리의 다른 글
Vector Calculus (6) - Geometric Significance of Transformation Matrices (0) | 2021.07.19 |
---|---|
Vector Calculus (5) - Properties of Matrix (0) | 2021.07.16 |
Vector Calculus (4) - Matrix Operation (0) | 2021.07.15 |
Vector Calculus (2) - Coordinate Transformation (0) | 2021.07.13 |
Vector Calculus (1) - Scalar, Vector (0) | 2021.07.12 |