분류 전체보기 54

Vector Calculus (7) - Definitions and Operations of a Scalar and a Vector

17. Definitions of a Scalar and a Vector in Terms of Transformation Properties $ x_{i}'=\sum_{j}^{}\lambda _{ij}x_{j} $의 좌표변환($ \sum_{j}^{}\lambda _{ij}\lambda _{kj}=\delta _{ik} $) $ \phi $ is unaffected → scalar $ A_{i}'=\sum_{j}^{}\lambda _{ij}A_{j} $ is transformed from the $ x_{i} $ system to the $ x_{i}' $ system → vector 18. Properties of Scalar and Vector $ \vec{A}, \vec{B} $: Vector, $ ..

Vector Calculus (6) - Geometric Significance of Transformation Matrices

13. Rotating Coordinate Axes 1) Counterclockwise about the $ x_{3} $-axis $ x_{1}'=x_{2}, x_{2}'=-x_{1}, x_{3}'=x_{3} $ $ \lambda _{11}=\lambda _{13}=\lambda _{22}=\lambda _{23}=\lambda _{31}=\lambda _{32}=0 $ $ \lambda _{12}=\cos (x_{1}',x_{2})=1 $ $ \lambda _{21}=\cos (x_{2}',x_{1})=-1 $ $ \lambda _{33}=\cos (x_{3}',x_{3})=1 $ $ \Rightarrow \vec{\lambda_{1}} =\bigl(\begin{smallmatrix} 0 & 1 & ..

Vector Calculus (4) - Matrix Operation

8. Kind of Matrix Matrix: set을 만들기(필요로 하는 물리량을 하나의 괄호 안에) Square Matrix: n x n Column Matrix: $ \vec{X}=\bigl(\begin{smallmatrix} x_{1}\\ x_{2} \\ x_{3} \end{smallmatrix}\bigr) $ Row Matrix: $ \vec{X}=\bigl(\begin{smallmatrix} x_{1} & x_{2} & x_{3} \end{smallmatrix}\bigr) $ 9. Multiply Tow Matrices $ \vec{C}=\vec{A}\vec{B} $ $ C_{ij}=[\vec{A}\vec{B}]_{ij}=\sum_{k}^{}A_{ik}B_{kj} $ number of colu..

Vector Calculus (3) - Properties of Rotation Matrices

6. Properties of Rotation Matrices $ (\alpha ,\beta ,\gamma )\rightarrow (\alpha ',\beta ',\gamma ') $ $ (x_{1},x_{2},x_{3}) $ coordinate에서 $ \Theta $ 만큼 회전한 $ (x_{1}',x_{2}',x_{3}') $ coordinate 1) $ \cos ^{2}\alpha +\cos ^{2}\beta +\cos ^{2}\gamma =1 $ $ x_{1}=r\cos \alpha , x_{2}=r\cos \beta , x_{3}=r\cos \gamma $ $ r^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=r^{2}\cos ^{2}\alpha +r^{2}\cos ^{2}\beta..