9. Existence and Uniqueness of Solution $ y''+py'+qy=0 $ $ y(x_{0})=K_{0}, y'(x_{0})=K_{1} $ Theorem 1) Existence and Uniqueness Theorem for Initial Value Problems p, q: continuous on I ($ x_{0}\in I $) Then $ y''+py'+qy=0 $ ($ y(x_{0})=K_{0}, y'(x_{0})=K_{1} $) has a unique solution on I. Theorem 2) Linear Dependence and Independence of Solutions i) $ y_{1}, y_{2} $: Linearly Dependent $ \Leftr..