math for physics 39

Second-Order Linear ODE (5) - Existence and Uniqueness of Solution

9. Existence and Uniqueness of Solution $ y''+py'+qy=0 $ $ y(x_{0})=K_{0}, y'(x_{0})=K_{1} $ Theorem 1) Existence and Uniqueness Theorem for Initial Value Problems p, q: continuous on I ($ x_{0}\in I $) Then $ y''+py'+qy=0 $ ($ y(x_{0})=K_{0}, y'(x_{0})=K_{1} $) has a unique solution on I. Theorem 2) Linear Dependence and Independence of Solutions i) $ y_{1}, y_{2} $: Linearly Dependent $ \Leftr..

Second-Order Linear ODE (4) - Euler-Cauchy Equation

8. Euler-Cauchy Equation $ x^{2}y''+axy'+by=0 $ $ y=x^{m} \rightarrow y'=mx^{m-1}, y''=m(m-1)x^{m-2} $ $ \rightarrow x^{2}m(m-1)x^{m-2}+axmx^{m-1}+bx^{m}=0 $ $ x^{m}(m^{2}+(a-1)m+b)=0 $ $ m^{2}+(a-1)m+b=0 $ 1) Real Different Roots $ m=m_{1}, m_{2} $ $ x^{m_{1}}, x^{m_{2}} $: Linearly Independent $ \therefore y=c_{1}x^{m_{1}}+c_{2}x^{m_{2}} $ ex) $ x^{2}y''+xy'-9y=0 $ $ y=x^{m} \rightarrow x^{m}(..

Second-Order Linear ODE (3) - Free Oscillaion

6. Free Oscillation of a Mass Spring System - Undamped Small Damping & Short Time → Disregard Damping $ my''+ky=0 $ (k: spring constant) $ y''+\frac{k}{m}y=0 $ $ y''+\omega _{0}^{2}y=0 $ ($ \omega _{0}=\sqrt{\frac{k}{m}} $) $ y=e^{\lambda t} \rightarrow \lambda ^{2}+\omega _{0}^{2}=0 \rightarrow \lambda =\pm \omega _{0}i $ $ \therefore y(t)=A\cos \omega _{0}t+B\sin \omega _{0}t $ $ =\sqrt{A^{2}+..

Second-Order Linear ODE (2) - Constant Coefficients

4. Second-Order Linear ODE with Constant Coefficients $ y''+ay'+by=0 $ $ y=e^{\lambda x} \rightarrow y'=\lambda e^{\lambda x}, y''=\lambda^{2} e^{\lambda x} $ $ \lambda^{2} e^{\lambda x}+a\lambda e^{\lambda x}+be^{\lambda x} $ $ =(\lambda^{2}+a\lambda+b)e^{\lambda x}=0 $ $ \lambda^{2}+a\lambda+b=0 $: Characteristic Equation(Auxiliary Equation) 1) Two Distinct Real Root $ \lambda^{2}+a\lambda+b=(..

First-Order ODE (1) - Separable ODE

Ordinary Differential Equation 카테고리는 10th (Erwin Kreyszig)의 순서를 따라갑니다 1. Basic Concepts Physical System → Mathematical Model → Mathematical Solution → Physical Interpretation Ordinary Differential Equation Order(n) First-Order ODE: $ F(x,y,y')=0, y'=f(x,y) $ General Solution: containing an arbitrary constant c Particular Solution: not containing an arbitrary constant c Initial Value Problem: $ y..